Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior
نویسندگان
چکیده
Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC) is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC's role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of functional Magnetic Resonance Imaging (fMRI) Blood-Oxygen-Level-Dependent (BOLD) signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA) was compared to that between the dACC and Primary Motor Cortex (M1). The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior.
منابع مشابه
Multiple nonprimary motor areas in the human cortex.
We measured the distribution of regional cerebral blood flow with positron emission tomography while three subjects moved their hand, shoulder, or leg. The images were coregistered with each individual's anatomic magnetic resonance scans. The data were analyzed for each individual to avoid intersubject averaging and so to preserve individual gyral anatomy. Instead of inspecting all pixels, we p...
متن کاملConvergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate.
Current models of basal ganglia circuitry primarily associate the ventral thalamic nuclei with relaying basal ganglia output to the frontal cortex. However, some studies have demonstrated projections from the ventral anterior (VA) and ventral lateral (VL) thalamic nuclei to the striatum, suggesting that these nuclei directly modulate the striatum. VA/VL nuclei have specific connections with pri...
متن کاملReduced basal ganglia function when elderly switch between coordinated movement patterns.
Structural and neurochemical changes in frontostriatal circuits are thought to underlie age-related behavioral deficits on cognitive tasks. Here, we test the hypothesis that age-related motor switching deficits are associated with reduced basal ganglia (BG) function. Right-handed volunteers (15 Old, and 15 Young) made spatially and temporally coupled bimanual circular motions during event-relat...
متن کاملGeneration of novel motor sequences: The neural correlates of musical improvisation
While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisat...
متن کاملNeural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.
UNLABELLED Integrating costs and benefits is crucial for optimal decision-making. Although much is known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices are attached to actions and require an evaluation of the associated motor costs. Yet how the brain incorporates motor costs into choices remains largely unclear. We used human fMRI during choices invo...
متن کامل